Optional Parts Applicable to S and SE Types

Bellows exclusive for slide shifters

The S and SE types incorporate Oiles bearings on the sliding surfaces and have superior foreign matter resistance. It is recommended to use the exclusive bellows if higher resistance is required. A heat-resistant bellows is also available.

Caps for covering up bolt holes on guide rails

Exclusive caps for preventing dust, etc. from entering the bolt holes for mounting the quide rail are available.

SPCC

SPCC

Product Identification for Exclusive Bellows for Slide Shifters

! CAUTION

■ Mounting screw hole on the guide rail for bellows is optional.

■ Flexible Bellows

28J - A - 100 - T Part No. └ Put T for heat-resistant bellows - Shortened length of bellows (Lmin) Bellows expansion ratio A or B

■ Fix Bellows

28JK - 140 - T Part No. Put T for heat-resistant bellows Length of fixed bellows

• End plate of 20J sticks out 8mm from the table surface.

Part No.	W×H	Bellows size WJ×HJ	Expansion ratio	Stroke	Expansion ratio	Stroke	h1	h2	W ₁	RH	R ₁	R ₂	N	M	Applicable tables
20J	45×30	52×32	5	under 1100	3.5	1100 or more	14	凸8	37	22	6	10	M3×10	M4×8	STC20 STE20
28J	90×50	60×40	5	under 1100	3.5	1100 or more	26	凹1	44	32	8	18	M3×10	M4×8	STC28 STF28 STE28 STFE28
38J	110×65	80×52	7	under 1300	5.5	1300 or more	36	凹1	58	42	10	24	M4×12	M5×10	STF38
48J	140×82	101×67	10	under 1300	7.5	1300 or more	50	凹3	74	52	12	30	M6×12	M6×10	STF48

Calculating formula

Length of Bellows

(L min=Shortened length, L max=Expanded length)

In case of expansion ratio A
$$L min = \frac{S}{A-1}, L max = L min \times A$$

In case of expansion ratio B
$$L \ min = \frac{S}{B-1}, L \ max = L \ min \times B$$

Total length of guide rail when using bellows

Using bellows at both ends

$$L=(L min \times 2) + S + \ell_1$$

Using bellows at one end

L=L min+S+ ℓ_1

In case of standard guid rails, L min dimension needs to be adjusted.

L min=
$$\frac{L-S-\ell_1}{2}$$

S: Stroke

A. B: Expansion ratio of bellows L max: Expanded length of bellows L min: Shortened length of bellows

£1: Table length

 ℓ2: Fix bellows length L: Rail length

Calculation example

Expression of calculating the bellows length is L min= $\frac{S}{A-1}$

L min =
$$\frac{400}{5-1}$$
 = 100mm

Required rail length L₁= (L min×2) +S+ ℓ ₁

 $L_1 = (100 \times 2) + 400 + 300 = 900 \text{mm}$

Bellows length L min when using standard rail length L2 (1000mm)

L min= (1000-400-300) /2=150mm

STF28 Stroke: S=400mm Expansion ratio: A=5 Table length: £1=300mm Fix bellows length: ℓ2=140mm Required rail length: L1 Standard rail length: L2=1000mm

295

Clamp Plate End Plate

Durability Test Data / To Prevent Malfunctioning

Durability Test Data

S Type

<Testing conditions> Type: STF28 four shift tables GR28-1200 dual-axis

Load: 2,940N {300kgf} Velocity: 0.33m/s {20m/min}

Sliding distance: 1,000km

0 • 0 GR28-1200 Stroke 500mm

<Result>

Wear amount on bushing: 0.032mm

Coefficient of friction: 0.12~0.30

on shaft: 0.006mm

<Result>

Wear amount on liner: 0.025mm

Coefficient of friction: 0.08~0.14

Temperature of friction: 32~42°C

on rail: 0.005mm

BC Type

<Testing conditions> Type: BTC30 four shift tables BGS30-1000 dual-axis

Load: 735N {75kgf}

Moment: 323N·m {33kgf·m} Velocity: 0.25m/s {15m/min}

Stroke: 500mm

Sliding distance: 300km (300000 cycles)

<Result>

Wear amount on bushing: 0.023mm

Coefficient of friction: 0.16~0.20

on shaft: 0.012mm

BTU Type

<Testing conditions>

Type: BTU30-500 Load: 2,940N {300kgf Velocity: 0.42m/s {25m/min}

Stroke: 460mm

Sliding distance: 730 (800000 cycles)

BA Type

<Testing conditions>

Type: BTCA25-150 one shift table BGS25-800 dual-axis

Load: 196N {20kgf} Velocity: 0.50m/s {30m/min}

Stroke: 600mm

<Result>

Wear amount on bushing: 0.035mm

Coefficient of friction: 0.10~0.25 Temperature of friction: 42~85°C

on shaft: 0.008mm

<Result>

Wear amount on bushing: 0.055mm

Coefficient of friction: 0.20~0.28

on shaft: 0.008mm

BF Type

<Testing conditions> Type: BTF40 four shift tables BGS40-800 dual-axis

Load: 2,940N {300kgf} Velocity: 0.42m/s {25m/min}

Sliding distance: 1,000km

To Prevent Malfunctioning

■ If the point of the drive source is apart from the shift tables

If the position of drive source P is apart from the rail surface by ℓ_2 , of ℓ_2/ℓ_1 exceeds 1.67 when the coefficient of friction μ is 0.3, resulting in malfunctioning. Take the allowable moment load into consideration and reduce ℓ_2/ℓ_1 below 1.5.

■ If the shift table installation position is apart or the point of the drive source is apart

If the \$\mathcal{L}_2/\mathcal{L}_1\$ ratio of dual-axis parallel rails is large, the couple of the drive source P and resistance F1 and F2 becomes large and the slide shifter works improperly. Reduce £2/£1 below 3. As the point of the drive source becomes apart from the center, the condition becomes worse. Synchronize the drive source with P1 and P2 if $\ell 2/\ell 1$ is inevitably larger than 3 for reasons of the structure.

If the installation base has low accuracy

Do not select the S type if the parallelism t exceeds 0.3.

Select the B type if the parallelism t exceeds 0.3. Insert shims under the shaft holders to adjust them.

After adjustment, check the parallelism with a level, straight edge,